翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

aerodynamic drag : ウィキペディア英語版
aerodynamic drag

In aerodynamics, aerodynamic drag is the fluid drag force that acts on any moving solid body in the direction of the fluid freestream flow.〔Anderson, John D. Jr., ''Introduction to Flight''〕 From the body's perspective (near-field approach), the drag comes from forces due to pressure distributions over the body surface, symbolized D_, and forces due to skin friction, which is a result of viscosity, denoted D_. Alternatively, calculated from the flowfield perspective (far-field approach), the drag force comes from three natural phenomena: shock waves, vortex sheet, and viscosity.
==Introduction==
The pressure distribution over the body surface exerts normal forces which, summed and projected into the freestream direction, represent the drag force due to pressure D_. The nature of these normal forces combines shock wave effects, vortex system generation effects and wake viscous mechanisms all together.
When the viscosity effect over the pressure distribution is considered separately, the remaining drag force is called ''pressure'' (or ''form'') ''drag.'' In the absence of viscosity, the pressure forces on the vehicle cancel each other and, hence, the drag is zero. Pressure drag is the dominant component in the case of vehicles with regions of separated flow, in which the pressure recovery is fairly ineffective.
The friction drag force, which is a tangential force on the aircraft surface, depends substantially on boundary layer configuration and viscosity. The calculated friction drag D_f utilizes the x-projection of the viscous stress tensor evaluated on each discretized body surface.
The sum of friction drag and pressure (form) drag is called viscous drag. This drag component takes into account the influence of viscosity. In a thermodynamic perspective, viscous effects represent irreversible phenomena and, therefore, they create entropy. The calculated viscous drag D_v use entropy changes to accurately predict the drag force.
When the airplane produces lift, another drag component comes in. Induced drag, symbolized D_i, comes about due to a modification on the pressure distribution due to the trailing vortex system that accompanies the lift production. Induced drag tends to be the most important component for airplanes during take-off or landing flight. Other drag component, namely wave drag, D_w, comes about from shock waves in transonic and supersonic flight speeds. The shock waves induce changes in the boundary layer and pressure distribution
over the body surface. It is worth noting that not only viscous effects but also shock waves induce irreversible phenomena and, as a consequence, they can be measured through entropy changes along the domain as well. The figure below is a summary of the various aspects previously discussed.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「aerodynamic drag」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.